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ABSTRACT

Studies with rodents infected withTrichinella spiralis, Heligmosomoides poly-
gyrus, Nippostrongylus brasiliensis, andTrichuris murishave provided consid-
erable information about immune mechanisms that protect against parasitic gas-
trointestinal nematodes. Four generalizations can be made: 1. CD4+ T cells
are critical for host protection; 2. IL-12 and IFN-γ inhibit protective immunity;
3. IL-4 can: (a) be required for host protection, (b) limit severity of infection,
or (c) induce redundant protective mechanisms; and 4. Some cytokines that are
stereotypically produced in response to gastrointestinal nematode infections fail
to enhance host protection against some of the parasites that elicit their produc-
tion. Host protection is redundant at two levels: 1. IL-4 has multiple effects on

∗The US government has the right to retain a nonexclusive, royalty-free license in and to any
copyright covering this paper.
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the immune system and on gut physiology (discussed in this review), more than
one of which may protect against a particular parasite; and 2. IL-4 is often only
one of multiple stimuli that can induce protection. Hosts may have evolved the
ability to recognize features that characterize parasitic gastrointestinal nematodes
as a class as triggers for a stereotypic cytokine response, but not the ability to
distinguish features of individual parasites as stimuli for more specific protective
cytokine responses. As a result, hosts deploy a set of defense mechanisms against
these parasites that together control infection by most members of that class, even
though a specific defense mechanism may not be required to defend against a par-
ticular parasite and may even damage a host infected with that parasite.

INTRODUCTION

Medical and Economic Importance of Gastrointestinal
Nematode Infections
Gastrointestinal roundworm parasites, including those within the genera Neca-
tor, Ancylostoma, Ascaris, Trichuris, and Strongyloides, infect approximately
one billion people worldwide and are believed to cause approximately one mil-
lion deaths annually (1, 2). Children in developing countries are particularly
likely to be infected by gastrointestinal nematodes; in some endemic areas the
prevalence by age 10 approaches 100% (3). Infections tend to be chronic and
reinfection rates high. Chronic nematode infections can be particularly dam-
aging to children, causing growth retardation and impaired cognitive function
in severely infected individuals (4, 5). In addition to their direct pathogenic
effects, gastrointestinal worm infections can also predispose to secondary bac-
terial and protozoan infections (6, 7). The economic damage produced by the
detrimental effects of gastrointestinal nematode parasites on livestock produc-
tion worldwide adds to the misery they cause through human infection.

Although primary health care and effective public sanitation can success-
fully eliminate human gastrointestinal parasitism, immunological intervention
may promote control in situations where gastrointestinal parasitism remains en-
demic and intractable. Successful immunization procedures may be more cost-
effective and practical than other forms of therapy and could reduce consumer
concerns over antihelmintic drug residues in livestock. Inasmuch as infections
with small numbers of worms are generally well tolerated, immunity need not
be complete to protect against symptomatic disease. Furthermore, an immune
response that decreases worm fecundity will have important epidemiological
significance even if it fails to decrease the number of adult worms harbored by an
individual host because it will decrease the spread of infection in a community.

The ability of immune responses to control gastrointestinal nematode infec-
tions has been demonstrated in experimental animals by correlations between
host resistance and the expression of MHC and non-MHC genes that regulate
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immune responses (8) and by protective vaccination (see below). In humans in-
fected with some gastrointestinal nematodes such asTrichuris trichiura,a close
relative of the mouse parasiteTrichuris muris, immune regulation of infection
is compatible with observations that the intensity of a reinfection following
drug treatment usually resembles that of the initial infection (9, 10). Because
the type of immune response made to a parasite is as important as the mag-
nitude of the response in controlling infection, discovery of procedures that
induce the proper type of response will be a critical requirement for successful
immunological control of gastrointestinal nematode infections.

Cytokine Regulation of Host Protection Against
Parasite Infections
Understanding of the mechanisms that are important for regulation of antipar-
asite immune responses was greatly advanced by two discoveries: First, CD4+

T cells differ in the patterns of cytokines that they express. Two polar CD4+

T cell groups were described: Th1 cells that secrete interferon (IFN)-γ , inter-
leukin (IL)-2, and lymphotoxin, but not IL-4, IL-5, IL-9, or IL-10; and Th2
cells that secrete IL-4, IL-5, IL-9, and IL-10, but not IL-2, IFN-γ , or lympho-
toxin (11). And second, host survival can depend upon the set of cytokines
that are produced in response to an infectious agent. Initial studies, with mice
inoculated in their footpads withLeishmania major, showed that C57BL/6 and
C3H/HeN mice, which make a predominantly Th1 response, resolve infections,
whereas BALB/c mice, which make a predominantly Th2 response, develop
a chronic, and eventually lethal, systemic infection. IFN-γ and IL-4 were
demonstrated to be critical cytokines in regulating host responses toL. major
infection: Antibody neutralization of IFN-γ leads to lethalL. major infection
in the normally resistant strains, while treatment with anti-IL-4 mAb allows
normally susceptible BALB/c mice to resolve anL. major infection. An addi-
tional cytokine, IL-12, promotes resistance toL. major by stimulating IFN-γ
production and inhibiting IL-4 production (12).

The effects of IFN-γ and IL-4 on macrophage production of inducible NO
synthase (iNOS), the enzyme that catalyzes macrophage production of NO,
are largely responsible for their regulation of host recovery fromL. major
infection: Macrophage killing of ingestedL. major depends upon NO pro-
duction, and iNOS is induced by IFN-γ and suppressed by IL-4 (13). Sub-
sequent studies demonstrated connections between a Th1 response and host
defense against several intracellular parasites, bacteria, and viruses, including
Toxoplasma gondii(14),Plasmodiumsps. (15, 16),Cryptosporidium parvum
(17, 18),Listeria monocytogenes(19), and murine cytomegalovirus (20), al-
though control of these infections may be mediated by Th1-associated cytokine
stimulation of NK activity, CTL function, and the production of cytotoxic an-
tibodies, in addition to iNOS induction (21–23).
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Observations that the cytokines that are produced by Th1 cells (type 1 cy-
tokines) are involved in host control of so many infectious agents made re-
searchers question whether the cytokines that are produced by Th2 cells (type
2 cytokines) have any host-protective role. One suggestion was that type 2
cytokines function predominantly to limit inflammation that is induced by type
1 cytokines. Experimental data support the view that this is one function of
some type 2 cytokines. IL-10–deficient mice develop inflammatory bowel dis-
ease and have increased susceptibility to septic shock (24, 25). However, it is
arguable that IL-10 should not be considered a type 2 cytokine because IL-10
production does not correlate particularly well with production of other type
2 cytokines in pathogen-infected animals (26, 27). IL-4 also has some anti-
inflammatory effects: Although mice that lack a functional IL-4 gene do not
develop spontaneous inflammatory disease (28, 29), they are more suscepti-
ble than normal mice to a TNF-associated wasting syndrome that is caused
by infection withSchistosoma mansoni(E Pearce, personal communication).
Other type 2 cytokines such as IL-5 have no known anti-inflammatory effects
(30), and IL-4 and IL-5 themselves induce an inflammatory response that is
characterized by mastocytosis, IgE production, and eosinophilia (31, 32).

An additional possibility is that control of some infectious agents is regu-
lated differently from that of the intracellular parasites mentioned above, so
that type 2 cytokine responses may limit rather than exacerbate disease. This
possibility was investigated in studies of mice infected with gastrointestinal
nematodes, which characteristically induce type 2 cytokine responses with
eosinophilia, increased IgE levels, and mucosal mastocytosis (33). This paper
reviews the evidence for type 2 cytokine control of mouse and rat infections with
four such parasites: (i)Nippostrongylus brasiliensisand (ii)Heligmosomoides
polygyrus(i.e. Nematospiroidies dubius), from the superfamily Heligmoso-
matoidea, which generally produce acute and chronic infections, respectively,
in rodents, and have life cycles similar to trichostrongyle parasites that infect
the small intestines of humans and livestock; and (iii)Trichuris murisand (iv)
Trichinella spiralisfrom the superfamily Trichineloidea, which interact, respec-
tively, with gut epithelial cells in the large intestine of mice and in the small
intestine of more than 100 mammalian species, including humans, livestock,
and rodents.

PARASITIC GASTROINTESTINAL NEMATODES
USED FOR ANIMAL EXPERIMENTS

Two to four hours after ingestion of muscle tissue that contains the encysted first
stage larvae ofT. spiralis, larvae ecdyse in the host stomach and enter duodenal
or jejunal epithelium. Larvae mature into adults and mate in the next 36 hours.
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Adult worms induce syncytium formation and reside within intestinal epithelial
cells. Female worms release larvae, beginning 4–7 days after ingestion. Larvae
enter intestinal lymphatics or mesenteric venules and migrate throughout the
host body, settling most heavily in host striated muscle, where they start to
encapsulate by 17–21 days after ingestion. Adult worms can remain in the gut
of large mammals such as pigs and humans for several weeks, but generally
reside in rodent intestines for less than 2 weeks (34, 35).

H. polygyrusis a nematode parasite, native to mice, that generally establishes
chronic infections and lives only in the gut of its mammalian host. The infective
stage is free-living as a third-stage larva in a second molt cuticle. Parasitic third-
stage larvae enter the wall of the anterior small intestine within the first 24–72 h
after ingestion. They reside in the circular muscle layer of the muscularis
externa, where they feed on host tissues and develop until they exit into the
gut lumen 8 days after oral inoculation (36). Once in the gut lumen, they
rapidly mature into adults, feed on host intestinal mucosa, and continue to live,
in most mouse strains, for several months (37). Although primary infections
are chronic, challenge inocula may be eliminated by immune hosts in a much
shorter period of time (38–40).

N. brasiliensis, which is naturally a rat nematode parasite, has been adapted to
the mouse for experimental purposes (41). Infective larvae are free-living in the
third stage. Mouse-adapted strains ofN. brasiliensispenetrate (or are injected
through) the host skin and, 24–48 h later, migrate to the lungs, where an in-
flammatory response is induced that is characterized by pulmonary eosinophilic
granulomas. Larvae are coughed up and swallowed 48–72 h after inoculation,
and mature in the jejunum into egg-laying adults by 5–6 days after inoculation.
Adult worms are expelled, damaged but still alive, from the gut of immuno-
competent rodents less than 2 weeks after inoculation (42). Challenge inocula
of N. brasiliensislarvae reach the gut in reduced numbers and produce eggs
transiently if they produce eggs at all (43, 44). Thus, this parasite can be used as
a model for short-lived infections that have a systemic as well as a gastrointesti-
nal phase in which host defense mechanisms cause expulsion without killing
the parasite.

The whipwormTrichuris murisis a nematode with an infective first-stage
larva contained in an environmentally resistant egg that enters mice by ingestion
and parasitizes the mouse cecum and colon, where its head and part of its
filamentous anterior region embed in, and digest, host mucosal epithelium. It
causes chronic infections in some mouse strains but is expelled from other
strains before egg-laying adults can develop (45). Differences in the course of
T. murisinfection among inbred mouse strains reflect the spectrum of infection
that is seen in outbred mice infected with the same parasite and in humans
infected with the closely related parasiteT. trichiura (46, 47).
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T CELL AND CYTOKINE REGULATION
OF HOST-PROTECTIVE IMMUNITY

General Considerations
Given the diverse life cycles of the four parasites discussed here, it is not
surprising that no single immunological mechanism of host protection can be
identified that is as pervasive as the IL-12/IFN-γ /iNOS pathway that protects
hosts against many intracellular parasites. At least four generalizations are,
however, apparent:

PROTECTIVE IMMUNITY AGAINST GASTROINTESTINAL NEMATODE PARASITES IS

CD4+ T CELL-DEPENDENT This fact has been demonstrated in studies in nude
(congenitally athymic) mice and rats, as well as in studies of mice treated
with a cytotoxic anti-CD4 mAb (48–55). Anti-CD4 mAb, but not anti-CD8
mAb, treatment prevents expulsion ofN. brasiliensisand promotes parasite
egg production for as long as the mAb treatment is maintained. Mice are
still protected against reinfection, however, if anti-CD4 mAb is injected only
at the time of the challenge infection, even though this treatment suppresses
polyclonal antibody responses to the challenge infection (50). Thus, CD4+

T cells are more likely to induce host-protective mechanisms than to directly
participate in worm elimination.

As is true forN. brasiliensisinfections, anti-CD4 mAb treatment prolongs
a primary infection of normally resistant mouse strains withT. murisand al-
lows larvae to develop into fecund adults (53). CD4+ T cell dependence of
protective immunity againstT. spiralis, in contrast, is best demonstrated during
challenge infections. Previously infected normal rats expel most ingested or
orally inoculatedT. spiralis larvae in less than 1 h; this rapid expulsion phe-
nomenon is not observed in nude rats (54). Furthermore, CD4+ T cells have
been shown in transfer experiments with mice to mediate protection against
a challengeT. spiralis infection (55). CD4+ T cell–dependent immunity to
H. polygyrusduring a primary infection is demonstrated by the increased egg
production that results from treating hosts with anti-CD4 mAb. Immunity is
more obvious during challenge infections withH. polygyrusin previously in-
fected, drug-cured BALB/c mice. Challenge infections are usually much milder
than primary infections, with reduced adult worm survival and little egg pro-
duction by surviving worms. Treatment with anti-CD4 mAb at the time of the
challenge infection completely blocks host immunity (51).

IL-12 AND IFN-γ PROMOTE THE SURVIVAL OF GASTROINTESTINAL NEMATODE

PARASITES This has been particularly well demonstrated in mice infected
with eitherT. murisor N. brasiliensis. Mouse strains that produce a strong
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IFN-γ response to a primaryT. muris infection, unlike strains that produce
a predominantly IL-4 response, develop chronic infections with this parasite.
Treatment with a neutralizing anti-IFN-γ mAb at the time ofT. murisinocu-
lation results in expulsion of larvae before they can develop into fecund adults
(56). In contrast, treatment of normally resistant mouse strains with IL-12
during the second week ofT. murisinfection causes an IFN-γ -dependent in-
crease in host susceptibility that allows larvae to mature into egg-laying adults
(AJ Bancroft, J Sypek, KJ Else, RK Grencis, personal communication). Sim-
ilarly, treatment ofN. brasiliensis–infected mice with IFN-γ or IL-12, starting
at the time of parasite inoculation, enhances egg production severalfold and
prolongs the course of infection (57). The effects of IL-12 on the course of
anN. brasiliensisinfection depend predominantly on the production of IFN-γ ,
because they are minimal in anti-IFN-γ mAb-treated mice and in mice that
lack a functional gene for IFN-γ (57; JF Urban Jr, FD Finkelman, unpub-
lished data). IL-12 treatment during a primaryN. brasiliensisinfection retards,
but does not permanently inhibit, Th2 cytokine responses and worm expul-
sion during a challenge infection, although worm expulsion will continue to be
suppressed during a challenge infection if IL-12 treatment is continued. Ef-
fects of IL-12 treatment on responses by BALB/c mice to anN. brasiliensis
infection differ from effects on responses to anL. major infection in that a
type 2 cytokine response develops and adult worms are expelled once IL-12
treatment is discontinued during theN. brasiliensisinfection (57; JF Urban
Jr, FD Finkelman, unpublished data), but a type 1 response and host protec-
tion continue when IL-12 treatment is terminated during theL. major infection
(12).

Initial studies with mice infected withT. spiralissuggested that IFN-γ might
be important for host protection. During a primary infection, adult worms were
expelled from the gut more rapidly in AKR mice than in MHC-identical B10.BR
mice. Infected AKR mice developed higher levels of IFN-γ -dependent IgG2a
anti-T. spiralisantibodies than did infected B10.BR mice, and in vitro anti-CD3
mAb stimulation of mesenteric lymph node cells from AKR mice induced more
IFN-γ secretion than did similar stimulation of cells from B10.BR mice (58).
However, subsequent studies demonstrated no inhibitory effect of anti-IFN-γ

mAb treatment on worm expulsion (JF Urban Jr, HR Gamble, FD Finkelman,
unpublished data; DL Wassom, personal communication). Furthermore, rapid
expulsion ofT. spiralis larvae by rats can be transferred with immune T cells
that secrete high levels of IL-4 and low levels of IFN-γ , but not by T cells that
secrete high levels of both IL-4 and IFN-γ (59). Finally, the ability of IgE
from previously infected rats to transfer the rapid expulsion response (60, 61)
is also consistent with a suppressive effect of IFN-γ , inasmuch as this cytokine
suppresses IgE responses (62).
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IL-4 PROMOTES PROTECTIVE IMMUNITY AGAINST GASTROINTESTINAL NEMATODE

PARASITES The host-protective effects of IL-4 have been most prominently
demonstrated in mice infected withT. murisandH. polygyrus. Anti-IL-4 or
anti-IL-4R mAb block host immunity to a challengeH. polygyrusinfection,
as demonstrated by increased adult worm survival and egg production (63).
Similarly, treatment with anti-IL-4R mAb [which blocks the effects of IL-13 as
well as those of IL-4 (RA Morawetz, L Gabriele, LV Rizzo, N Noben-Trauth,
R Kühn, K Rajewsky, W M¨uller, TM Doherty, F Finkelman, RL Coffman,
HC Morse III, “IL-4-independent immunoglobulin class switch to IgE in the
mouse,” submitted for publication)] causes normally resistant BALB/k mice
to develop chronic infections withT. muris (56). IL-4 dependence of host
resistance to these two parasites may differ, however, in that mice that lack a
functional gene for IL-4 fail to develop immunity toH. polygyrus(JF Urban Jr,
FD Finkelman, unpublished data), but still can expelT. muris (A Bancroft,
KJ Else, RM Grencis, personal communication). This suggests that either the
chronic absence of IL-4 can lead to the development of an alternative mechanism
that limits worm survival inT. muris-infected, but not inH. polygyrus-infected,
mice, or that IL-13 can substitute for IL-4 in promotingT. murisexpulsion, but
notH. polygyrusexpulsion.

The important role for IL-4 in controllingH. polygyrusandT. murisinfec-
tions has also been demonstrated by experiments in which mice with chronic
infections were treated with a formulation of IL-4 that has a long in vivo half-life
(IL-4 complexes, prepared by mixing IL-4 and a neutralizing anti-IL-4 mAb at
a 2:1 molar ratio, so that the antibody acts as a carrier protein that protects the
cytokine from degradation and excretion) (64). Treatment with IL-4 that has
been complexed in this way (IL-4C) cures even established primaryT. muris
andH. polygyrusinfections (56, 65).

The role of IL-4 in host protection againstN. brasiliensisandT. spiralisis less
straightforward.N. brasiliensisis expelled normally, or with only a slight delay,
in anti-IL-4 mAb-treated mice and in mice that lack a functional gene for IL-4
(17, 66). However, treatment with IL-4C terminates the chronicN. brasiliensis
infections that develop in anti-CD4 mAb-treated mice or SCID mice (65).
Inasmuch as IL-4 production is strongly induced in immunocompetent mice by
anN. brasiliensisinfection (67), it seems likely that this cytokine stimulates a
host-protective mechanism that is normally redundant but that becomes critical
when other CD4+ T cell–dependent mechanisms are blocked.

Anti-IL-4R mAb treatment ofT. spiralis-infected mice has a modest, but re-
producible disease-exacerbating effect [increased survival of adult worms and
increased numbers of muscle larvae (JF Urban Jr, HR Gamble, FD Finkelman,
unpublished data)]. Reports of increased numbers of muscle larvae in IgE-
depleted,T. spiralis-infected rats and of transfer of rapid expulsion with purified
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IgE antibody (60, 61, 68) also support a protective role for IL-4, because ne-
matode infection-induced IgE production is IL-4-dependent (69).

NOT ALL NEMATODE INFECTION-ASSOCIATED CYTOKINES ARE CONSISTENTLY

HOST-PROTECTIVE IL-5 is a case in point. All of the gastrointestinal nema-
tode infections discussed here stimulate eosinophilia and increased production
of IL-5, a cytokine that stimulates eosinophil production and activation (70–72).
Because eosinophils kill some parasite larvae in vitro (73), experiments have
examined the in vivo role of eosinophils or IL-5 in host control of nematode in-
fections. Most of the results of these studies have been negative. Although treat-
ment ofT. spiralis-infected rats with a polyclonal anti-eosinophil antiserum was
reported to increase numbers of muscle larvae (74),T. spiralis-infected mice that
were treated with anti-IL-5 mAb to prevent eosinophil responses did not have
increased susceptibility to infection (75). Similarly, anti-IL-5 mAb has no effect
on control ofT. muris, H. polygyrus, or N. brasiliensisinfections in mice, even
though it prevents blood and tissue eosinophilia in mice infected with any of
these parasites (63, 72; KJ Else, RL Grencis, personal communication). In con-
trast, increased killing ofN. brasiliensislarvae while they reside in the lungs has
been reported in transgenic mice that express increased amounts of IL-5 (76).
Additional evidence exists for IL-5-dependent killing of other helminths outside
of the gut: Angiostrongylus cantonensislarvae in mouse brain (77);Strongy-
loides venezuelensislarvae in mouse lung (78). These observations suggest that
eosinophils may contribute less to host protection against parasites that reside
within the gut than to protection against parasites residing in other host organs.

Physiology of Worm Expulsion
Evidence that IL-4 has a central role in the control ofH. polygyrusand
T. muris infections, and can contribute to the control ofN. brasiliensisand
T. spiralis infections, suggests that the molecular and physiological effects of
this cytokine may contribute to control of infection. Well-established effects
of IL-4 that might influence worm expulsion include stimulation of IgE re-
sponses (79) [and in the mouse, IgG1 responses (80)], stimulation of mucosal
mastocytosis (64, 66), promotion of T cell type 2 cytokine responses (81), stim-
ulation of T cell growth (82–85), and enhancement of expression of VCAM-1
[the endothelial cell receptor for the integrin VLA-4, which is involved in the
migration of macrophages, lymphocytes, and eosinophils across venous high
endothelium (86, 87)]. The best evidence for the involvement of at least some
of these mechanisms comes from studies of rapid expulsion ofT. spiralisfrom
the gut of immune rats.

RAPID EXPULSION OFT. SPIRALIS Most T. spiralis larvae ingested by a previ-
ously infected rat are expelled in less than 1 h, before they can embed in the
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intestinal mucosa. The small percentage of larvae that embed in the mucosa re-
sist rapid expulsion and remain within the host for several days (88). The ability
to rapidly expel larvae is most easily transferred to naive rats with a combination
of lymphoid cells and serum from immune rats, although transfer of immune
antiserum alone, or IgG1 or IgE fractions of immune serum, has enabled rapid
expulsion in some studies (60, 61, 89, 90). Mast cell involvement in rapid
expulsion is suggested by the presence of increased serum levels of rat mast
cell protease II at the time of expulsion (91). Increases in the mast cell products
leukotriene (LT)C4 (which causes smooth muscle contraction, increased vas-
cular permeability, and mucus hypersecretion) and LTB4 (which recruits and
activates inflammatory cells) are seen 30–60 min after larval challenge in the
mucosal tissue and in the secretions of the proximal small intestine (92). Re-
lease of histamine, 5-hydroxytryptamine (serotonin), and prostaglandin (PG)E2
also occurs (93).

Within the same time period, changes are seen in gut myoelectric patterns
in vivo (94) that suggest stimulation of gut smooth muscle contraction. In
vitro studies have, in fact, demonstrated that exposure of the small intestine
of T. spiralis-immune rats toT. spiralisantigen increases smooth muscle con-
tractility, and that this response is dependent upon mast cell activation and
5-hydroxytryptamine, but not on histamine or prostaglandins (95). Consis-
tent with this observation, the rapid rejection response is blunted in vivo when
rats are treated with 5-hydroxytryptamine S2 and S3 receptor antagonists (ke-
tanserin and MDL-72222, respectively), but not when they are treated with type
1 histamine (H1) receptor antagonists or with inhibitors of cyclooxygenase or
5-lipoxygenase (96).

Changes in small intestine fluid dynamics are also associated with rapid ex-
pulsion ofT. spiralis. Decreased fluid absorption is observed 30 min after a
second infection (97), and a mast cell–dependent, chloride ion–dependent in-
crease in short circuit current (a measure of net ion flux) is rapidly induced by
in vitro exposure of immune gut toT. spiralisantigen (60, 98). Intra-arterial
perfusion of serotonin into non-immune rats causes fluid secretion and reduced
worm establishment, and a combination of serotonin S2 and S3 receptor antag-
onists reduces fluid secretion and promotes worm establishment (96). Taken
together, these observations suggest that rapid expulsion ofT. spiralislarvae by
immune rats results from an anaphylactic reaction that is localized to the gut
and is caused by antibody (IgE or IgG)-mediated mast cell degranulation, with
5-hydroxytryptamine playing a dominant role and smooth muscle contraction
and increased fluid secretion serving as possible mechanisms that inhibit lar-
val penetration into the gut mucosa. No firm evidence is available, however, to
demonstrate that smooth muscle contraction and/or increased fluid secretion are
essential for rapid expulsion. In fact, inhibition of increased fluid secretion by
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treatment of mice with H1 receptor antagonists and cyclooxygenase inhibitors
has no suppressive effect on worm expulsion. Furthermore, induction of en-
hanced fluid secretion by PGE2, cholera toxin, and hypertonic Krebs-mannitol
solution does not reduce larval numbers (99).

PRIMARY INFECTIONS WITHT. SPIRALIS During a primary infection of rats with
T. spiralis, larvae penetrate into the small bowel mucosa and develop into
adults, which are expelled over a period of weeks, rather than minutes (35).
Nevertheless, some of the same changes in gut physiology that are observed
during the rapid expulsion phenomenon develop during a primary infection:
gut motility, jejunal radial and longitudinal smooth muscle layer thickness, and
longitudinal smooth muscle contractility all increase during infection (95, 100,
101). There is also a marked change in the pattern of peristalsis: Normal
coordinated contractions decrease, with a reduction in electrical slow wave
activity and spike potential frequencies. However, a migrating action potential
complex that rapidly sweeps through the bowel is observed and may have the
effect of expelling loosely attached parasites (102). Furthermore, by five days
after the initiation of a primary infection, small intestinal fluid dynamics have
changed from net absorption to net secretion (97). Thus, it is likely that the
same physiological processes that are associated with rapid expulsion develop
more chronically during a primary infection and may have a role in limiting
adult worm survival. Although the stimulatory effects of IL-4 on mast cells and
IgE production, which are strongly associated with rapid expulsion, suggest that
IL-4 has an important role in the induction of host immunity againstT. spiralis
in the rat, the lack of neutralizing anti-rat IL-4 antibodies or IL-4-deficient rats
has prevented direct testing of this hypothesis.

Studies in mice complement the rat studies. Although the classic rapid
expulsion phenomenon probably does not exist in mice (52), mouse studies
of host-protective mechanisms againstT. spiralishave been facilitated by the
greater availability of immunological reagents that work in mice than those
that work in other experimental species. Studies with anti-IL-4 receptor mAb
have directly demonstrated that IL-4 (or IL-13) has a role in limitingT. spiralis
infections (JF Urban Jr, HR Gamble, FD Finkelman, manuscript in prepara-
tion). Studies in which infected mice have been treated with IL-9, a cytokine
that mimics or enhances some of the effects of IL-4 (103, 104), have demon-
strated that this cytokine also can accelerateT. spiralisexpulsion (HC Faulkner,
RK Grencis, personal communication). Involvement of mast cells in mouse ex-
pulsion ofT. spiralis, including IL-9-accelerated expulsion, has been demon-
strated by experiments in which mucosal mastocytosis was blocked and expul-
sion delayed or prevented by treatment with anti-c-kit mAb (105; HC Faulkner,
RK Grencis, personal communication).
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STUDIES WITHH. POLYGYRUS-INFECTED MICE Studies using mice infected with
this parasite and uninfected mice that have been treated with IL-4C have demon-
strated IL-4 involvement in the stimulation of physiological changes that are
associated with worm expulsion, but they have not yet identified a unique
mechanism by which IL-4 induces worm expulsion. Increased small intestine
smooth muscle contractility is one such physiological change that is observed
during a secondH. polygyrusinfection, in which immune system control of
infection is marked, but not during a primary infection in which immune sys-
tem control of infection is less evident (106, 107). Increased small intestine
smooth muscle contractility can by blocked by treating mice during a second
H. polygyrusinfection with anti-IL-4 receptor mAb, and it can be induced in
uninfected mice by treating them over a period of 6 days with IL-4C. The
IL-4C-induced increases are blocked by an inhibitor of LTD4 and are not ob-
served in SCID mice, in 5-LO-deficient mice, or in W/Wv mice (107), which
have defectivec-kit expression that blocks mast cell development (108–110).
Although IL-4 induces an increase in intestinal smooth muscle responsiveness,
it neither speeds nor retards transit through the gut (107). In fact, as has been
described inT. spiralis-infected rats (102), BALB/c mice infected for a second
time withH. polygyruslose normal peristaltic activity, so that ingested material
is evenly, rather than segmentally, distributed in the gut. This effect is CD4+ T
cell dependent but is neither IL-4-dependent nor reversible by treatment with
IL-4C (107). Thus, if the changes in smooth muscle reactivity that are induced
by IL-4C have a role inH. polygyrusexpulsion, they probably mediate in-
creased gut spasticity that might limit the access of worms to their food source,
the gut mucosa (111), rather than create a caudally directed, irresistible flow of
gut contents.

Both IL-4C and a secondH. polygyrusinfection also induce changes in
small bowel fluid dynamics. In BALB/c mice, IL-4C treatment and a sec-
ondH. polygyrusinfection both increase small intestinal permeability and de-
crease the ability to absorb fluid from the small intestine in response to glu-
cose. Both responses are reversed inH. polygyrus-infected mice by treatment
with anti-IL-4 receptor mAb. Neither response is seen in IL-4C-treated or
H. polygyrus-infected W/Wv mice. IL-4C-treated SCID mice, which lack B
and T lymphocytes, develop increased intestinal permeability but do not demon-
strate a decreased fluid absorption response to glucose. In addition to increased
small intestinal permeability and decreased fluid absorption in response to glu-
cose, both IL-4C treatment and a secondH. polygyrusinfection increase the
secretory response to PGE2. This elevated secretory response is blocked in
H. polygyrus-infected mice by anti-IL-4 receptor mAb, is totally dependent on
neural regulation inH. polygyrus-infected mice (but not in uninfected, IL-4C-
treated mice), and occurs in SCID mice but not in W/Wv mice (C Sullivan,
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JF Urban Jr, SC Morris, FD Finkelman, T Shea-Donohue, manuscript in prepa-
ration). Thus, the net effects of exogenous or endogenously produced IL-4
in H. polygyrus-infected mice most likely increase the fluid content of the gut
lumen by increasing secretion and decreasing absorption. This view is rein-
forced by the direct demonstration of increased fluid in the jejunum of IL-4C-
treated, uninfected mice (C Sullivan, JF Urban Jr, SC Morris, FD Finkelman,
T Shea-Donohue, manuscript in preparation).

The absence of IL-4 effects on intestinal smooth muscle contractility and on
intestinal fluid dynamics in W/Wv mice suggests that intestinal mucosal mast
cells, which increase in number in response to IL-4C treatment, have a role in
mediating these effects. This interpretation is made less certain, however, by
the presence of abnormalities in W/Wv mice, besides the near total absence of
mast cells. These additional defects include an absence of the interstitial cells
of Cajal, which regulate peristalsis by acting as intestinal pacemakers to smooth
muscle (112), and a lack of intraepithelialγ δ T cells (113).

An additional uncertainty is whether the physiological changes that are in-
duced by IL-4C treatment are related to the mechanisms by which endoge-
nously produced IL-4 limits worm survival and egg production during a second
H. polygyrusinfection. Evidence that IL-4 has a critical role in host protection
againstH. polygyruscomes from two observations: 1. The decreased fecundity
and adult worm survival that typify a second infection are blocked by treatment
with anti-IL-4 or anti-IL-4 receptor mAb (63); and 2. IL-4C treatment de-
creases egg production and causes worm expulsion during a primary infection
(65). The mechanisms by which endogenously produced IL-4 and treatment
with exogenous IL-4C promote host protection may differ, and this possibil-
ity is aggravated by uncertainty about the stage of infection against which the
host-protective effects of IL-4 operate. Different investigators, working with
different mouse strains and strains ofH. polygyrus, have come to different
conclusions about the life-cycle stage ofH. polygyrusthat is the target of the
immune response during a challenge infection. One group has reported that
immunity is directed entirely against larvae that are developing within the gut
wall and is manifested by destruction of developing larvae (106). A second
group has reported that immune mechanisms arrest larval development within
the gut wall, without initially killing the larvae (114), and that larvae are killed
or expelled shortly after emerging into the gut lumen (115). A third group has
reported that immunity limits reinfection by preventing the initial penetration
of larvae into the gut wall, by killing larvae that reside in the gut wall, and by
killing worms shortly after they have emerged into the gut lumen (116). These
disparate findings all suggest that IL-4-dependent, host-protective mechanisms
operate relatively early in an infection, and the findings are consistent with
the observation that adult worms that remain present weeks after an initial
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inoculation withH. polygyrusare not expelled by the immune response to a
challenge infection, even though most larvae from the challenge inoculum are
destroyed or expelled (106, 114).

In contrast to these observations, treatment with exogenous IL-4 during a
primary infection is directed against adult worms: IL-4C treatment during the
encysted larval stage has little effect, while IL-4C treatment that commences
after worms have entered the gut lumen first decreases egg production and
then, after 6–9 days, causes worm expulsion (65). Thus, even if a major host-
protective effect of IL-4 is the induction of changes in gastrointestinal physi-
ology that expel worms shortly after they transit from the gut wall to the gut
lumen, it is likely that some host-protective events that depend on endogenous
IL-4 production during a challenge infection differ from host-protective events
that are induced by IL-4C treatment during a primary infection.

Another unresolved issue is whether the changes in smooth muscle contrac-
tility and intestinal fluid dynamics that are induced by IL-4C treatment during
a primary infection have a role in its induction of worm expulsion. Changes in
smooth muscle contractility are not observed until mice have been treated with
IL-4C for 6–7 days; however, decreases in egg production are usually observed
within the first 1–3 days of IL-4C treatment. In addition, preliminary exper-
iments suggest that the ability of the worm to feed on host intestinal mucosa
is suppressed within 24 hours after the start of IL-4C treatment. Furthermore,
5-LO-deficient mice expel worms (albeit somewhat more slowly than do nor-
mal mice) when treated with exogenous IL-4, even though IL-4C treatment of
5-LO-deficient mice does not increase smooth muscle contractility. Expulsion
is also delayed, but still induced, when W/Wv mice, infected for the first time
with H. polygyrus, are treated with IL-4C, even though IL-4-induced increases
in smooth muscle contraction and changes in epithelial fluid movement are not
observed in these mice. IL-4C treatment also decreases egg production, and to
some extent adult worm number, in SCID mice, which fail to respond to IL-4C
with increased smooth muscle responsiveness and increased, glucose-induced,
intestinal fluid absorption (65, 107; C Sullivan, T Shea-Donohue, manuscript
in preparation; JF Urban Jr, FD Finkelman, unpublished data).

Studies of antibody-mediated immunity toH. polygyrusalso raise questions
about the mechanisms by which IL-4 contributes to host protection. Sev-
eral investigators have demonstrated that considerable protection against a pri-
mary H. polygyrusinfection is afforded naive mice by transfer of large vol-
umes of immune serum (117–121). IgG1, the principal Ig isotype produced in
H. polygyrus-infected mice, is the principal protective factor in immune serum
(119, 120). Unlike treatment with exogenous IL-4, immune serum must be
injected during the first few days of infection, when parasite larvae are still en-
cysted within the wall of the small intestine, to be effective (114). Although IL-4
can contribute to the generation of an IgG1 response, treatment with anti-IL-4
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receptor mAb at the time of a challenge infection blocks protective immunity
without interfering with the polyclonal IgG1 response to the challenge infection
(122). Possibly, IL-4 is required to induce a cell type or immune mechanism
that interacts with IgG1 antibody to effect expulsion; alternately, IL-4 may be
required more for the production ofH. polygyrus-specific IgG1 antibody than
for the polyclonal IgG1 response. It is unlikely that the host-protective role of
IL-4 is related to the stimulation of an IgE response, even though IgE responses
in H. polygyrus-infected mice are IL-4-dependent, because host protection is
not blocked by treatment with anti-IgE mAb and is normal in mice that lack the
high-affinity IgE receptor (IM Katona, JF Urban Jr, FD Finkelman, unpublished
data; JF Urban Jr, D Dombrowicz, JP Kinet, unpublished data).

A role for the humoral immune system in host protection againstH. polygyrus
is shown not only by serum transfer experiments, but also by studies withµMT
mice, which lack B cells. These mice develop more severe second infec-
tions withH. polygyrusthan do normal mice of the same genetic background
(C57BL/6). It is not known, however, whether this defect reflects an impor-
tant direct role for antibodies in host protection, or whether B cells and/or
antibody enhance antigen presentation and T cell activation inH. polygyrus-
infected mice. The latter possibility is suggested by a 2–3-fold reduction
in cytokine expression inH. polygyrus-infected mice and a considerable re-
duction in the development of mucosal mastocytosis, as compared to normal
H. polygyrus-infected mice (JF Urban Jr, KB Madden, FD Finkelman, WC
Gause, unpublished data). It is unlikely that antibody is the principal mecha-
nism of host protection againstH. polygyrusinfection, because the resistance
of different strains of mice toH. polygyrusinfection does not correlate with the
ability of immune serum from these strains to protect naive mice against this
parasite (120).

Another possible mechanism by which IL-4 may contribute to immunity
againstH. polygyrusis its induction of VCAM-1 expression. IL-4 induction
of VCAM-1 expression by high venous endothelium may have a role in IL-4-
dependent immunity againstH. polygyrus, especially if immunity were directed
against larvae in the gut wall rather than against adult worms in the gut lumen,
because VCAM-1 expression might be required to allow VLA-4+ lymphocytes,
eosinophils, basophils, and macrophages to enter the vicinity of the larvae.
Experiments in which mice were injected with blocking mAbs to both VLA-4
and VCAM-1, however, have failed to inhibit protective immunity to a challenge
H. polygyrusinfection (JF Urban, Jr, FD Finkelman, unpublished data).

STUDIES WITH N. BRASILIENSIS-INFECTED RODENTS The relationship between
IL-4 and host protection differs between mice infected withH. polygyrusand
mice infected withN. brasiliensis: IL-4 is necessary but not sufficient to com-
pletely protect hosts in mice infected with the former parasite, while it is
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sufficient but not necessary to protect mice infected with the latter parasite.
IL-4-deficient mice expelN. brasiliensisnormally during a primary infec-
tion, but fail to expelH. polygyrusduring a challenge infection, whereas
treatment with exogenous IL-4 completely cures SCID mice infected with
N. brasiliensisbut only partially limits worm survival and fecundity in mice
infected withH. polygyrus(65). Although a primaryN. brasiliensisinfec-
tion induces many of the same changes in intestinal smooth muscle contrac-
tility and fluid dynamics that have been observed in mice inoculated for a
second time withH. polygyrus(48, 123–125; C Sullivan, T Shea-Donohue,
unpublished data), dissociation of these physiological responses and IL-4C-
induced worm expulsion is even more pronounced in mice infected with
N. brasiliensis: IL-4C induction ofN. brasiliensisexpulsion is B cell-, T cell-,
leukotriene- and mast cell–independent [it is delayed only slightly in anti-c-kit
mAb-treated SCID mice or 5-lipoxygenase-deficient mice treated with anti-
CD4 mAb, as compared to SCID mice treated with a control mAb or normal
mice treated with anti-CD4 mAb (JF Urban Jr, C Funk, FD Finkelman, unpub-
lished data)].

The lack of mast cell involvement in IL-4C-inducedN. brasiliensisexpulsion
from anti-CD4 mAb-treated mice and SCID mice is consistent with observations
that mast cells have little involvement in naturally occurringN. brasiliensis
expulsion. Expulsion ofN. brasiliensisfrom the gut of W/Wv mice has been
described as slow in some, but not all, studies (126, 127). Studies in which
expulsion was slow reported that bone marrow reconstitution, which restores
mast cells, did not correct for slow expulsion from the gut. This suggests that
any defect inN. brasiliensisexpulsion by W/Wv mice might result from the
abnormal intestinal pacemaker activity in these mice (112), which, because it
develops as a result of absentc-kit activity during the neonatal period, would
not be corrected by bone marrow reconstitution, or it might develop from the
absence of intraepithelialγ δ T cells in W/Wv mice. Thisγ δ T cell defect may
affect intestinal secretory responses inN. brasiliensis–infected mice, because
the intestinal secretory response to cholera toxin is deficient in W/Wv mice
and is not correctable by reconstitution with bone marrow (128). Studies with
N. brasiliensis-infected rats support the view that mast cells are not important for
controlling infections with this parasite, and they even raise the possibility that
mast cell products may contribute to parasite fecundity: Treatment of infected
rats with anti–stem cell factor antiserum decreases mucosal mast cell number
and parasite egg production inN. brasiliensis-infected rats, while treatment
with stem cell factor enhances mast cell activity early in infection, but increases
parasite egg production (129).

In contrast to these observations withN. brasiliensis-infected rodents, the gas-
trointestinal nematodesS. rattiandS. venezuelensisare expelled considerably
more slowly by W/Wv mice than by normal mice, and delayed expulsion is
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corrected by reconstituting W/Wv mice with normal bone marrow (130, 131).
In addition, induction of mucosal mastocytosis by treatment of normal mice
with IL-3 protects mice against infection withStrongyloides rattibut not against
infection withN. brasiliensis. W/Wv mice, which do not develop intestinal mu-
cosal mastocytosis when treated with IL-3, do not develop resistance against
S. ratti in response to IL-3 treatment (132). These observations are all consis-
tent with the interpretation that mucosal mast cells have more of a role in host
protection againstStrongyloidessp. than againstN. brasiliensis.

The ability of IL-4C to causeN. brasiliensisexpulsion in the absence of
mast cells, leukotrienes, or the specific immune system raises the possibility
that IL-4 might act directly on this worm rather than indirectly damage the
worm through its actions on the host. Two sets of experiments demonstrate
that this is not the case: First, a rat anti-IL-4 receptor mAb, which binds to the
mouse but not to the rat IL-4 receptor, blocks the ability of IL-4C to induce
expulsion ofN. brasiliensisfrom anti-CD4 mAb-treated mice (65). Even if
N. brasiliensishad, during its evolution, acquired the gene for a mammalian
IL-4 receptor, it should have acquired the gene of its natural host, the rat,
and, hence, expressed a receptor that is not blocked by the mAb used in these
experiments. Second, IL-4C fails to induce the expulsion ofN. brasiliensisfrom
anti-CD4 mAb-treated mice that are defective for the IL-4 signal transduction
molecule Stat6 (JF Urban Jr, FD Finkelman, unpublished data). If IL-4 acted
directly on the worm, an IL-4 signal transduction defect in the host should not
have affected IL-4C induction of expulsion.

As was true withH. polygyrusinfections, the effects of exogenous IL-4 treat-
ment on the host promote expulsion of adultN. brasiliensis, rather than killing
of larvae. Although it is not yet known whether IL-4 interferes with worm nu-
trition, two observations point in this direction: 1. As was seen inH. polygyrus
infections, IL-4C treatment has a slow effect onN. brasiliensis, first causing a
decrease in fecundity, and later, caudal migration and eventual expulsion (65).
And 2. N. brasiliensisadults are still alive, albeit smaller and paler than nor-
mal when expelled, and they can regain vitality and reestablish infection when
transferred by oral gavage to naive, untreated mice (133). The IL-4-induced in-
crease in intestinal permeability may inhibit feeding by blocking worm contact
with the gut mucosa and may represent a more chronic variant of the marked
protein leak from villar capillaries that is associated with rapid expulsion of
N. brasiliensisfrom the gut of rats that are undergoing an anaphylactic reaction
(134).

The IL-4-independent mechanism(s) that induceN. brasiliensisexpulsion has
not been identified but is known to be CD4+ T cell–dependent and suppressible
by interferon-γ and interferon-α/β (50, 135). Possible candidate inducing
factors and mechanisms include cytokines other than IL-4, mucus trapping,
antibody-mediated worm damage, and lipid peroxidation.
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Other cytokines In addition to IL-4, cytokines that have been studied for pos-
sible involvement in expulsion ofN. brasiliensisinclude IL-3, IL-5, IL-6, IL-9,
and IL-13. Although IL-13 shares many of the effects of IL-4 (136), we ini-
tially thought it unlikely that IL-13 mediates IL-4-independent expulsion of
N. brasiliensis, because expulsion is not inhibited by anti-IL-4 receptor mAb,
which blocks the IL-13 receptor as well as the IL-4 receptor (RA Morawetz,
L Gabriele, LV Rizzo, N Noben-Trauth, R K¨uhn, K Rajewsky, W M¨uller,
TM Doherty, F Finkelman, RL Coffman, HC Morse III, “IL-4-independent
immunoglobulin class switch to IgE in the mouse,” submitted for publication).
However, a recent experiment, which demonstrates that Stat6 KO mice fail
to expelN. brasiliensis(JF Urban Jr, SC Morris, KB Madden, JN Ihle, FD
Finkelman, unpublished observation), makes it quite likely that IL-13 is re-
sponsible for IL-4-independent expulsion of this parasite, because Stat6 is only
known to be involved in IL-4 receptor and IL-13 receptor signal transduction.
Thus, either IL-13 can induce mice to expelN. brasiliensis(in which case anti-
IL-4 receptor antibody must block the IL-13 receptor less effectively than it
blocks the IL-4 receptor), orN. brasiliensiscan be induced by another, still
unidentified cytokine that signals via Stat6.

Currently there is little evidence that cytokines other than IL-4 and IL-13
induceN. brasiliensisexpulson. Treatment of BALB/c mice with antibodies
to IL-6 or with anti-IL-4 plus anti-IL-5 [which nearly completely suppresses
eosinophilia and IgE production (122)], or anti-IL-3 plus anti-IL-4, and anti-
IL-9 [which nearly completely suppresses mucosal mastocytosis and IgE pro-
duction (KB Madden, JF Urban Jr, A Svetic′, WC Gause, FD Finkelman,
IM Katona, “The role of cytokines in helminth-induced mucosal mast cell hy-
perplasia,” in preparation)], also fail to inhibitN. brasiliensisexpulsion.

Mucus trapping N. brasiliensisexpulsion is accompanied by an increase in
intestinal goblet cell number and mucus production, as well as by a change in
the carbohydrate content of secreted mucus (137). These changes are at least
relatively T cell–dependent (48) and IL-4–independent (KB Madden, JF Urban
Jr, FD Finkelman, unpublished data) and may favor expulsion by trapping
worms, preventing them from adhering to the gut or feeding. However, exten-
sive studies of mucus trapping ofT. spiralisin infected rats have shown that this
phenomenon is not critical for parasite expulsion (138), and no studies have
been performed that test whether selective elimination of mucus production
affectsN. brasiliensisexpulsion.

Antibody-mediated protectionSerum from immune mice provides protection
againstN. brasiliensis(139). While anti-IgM-suppressed mice, which produce
little antibody, are able to expelN. brasiliensis(43), it remains possible that
either antibody or IL-4 can induce expulsion, so that only mice that have neither
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will develop chronic infections. Antibodies do not need to promote killing
mechanisms to provide host protection. Antibodies can participate in mast cell
activation, which leads to changes in gut physiology, and may block parasite
receptors that might promote adhesion to the gut mucosa. In addition, mucus
trapping has been demonstrated inT. spiralis-infected rats to be an antibody-
dependent process (140).

Lipid peroxidation The possibility that lipid peroxidation by host-produced
reactive oxygen intermediates damagesN. brasiliensisand leads to its ex-
pulsion was suggested by reports that increased peroxidation of gut lipids is
observed at the time ofN. brasiliensisexpulsion and that butylated hydrox-
yanisole, which scavenges reactive oxygen intermediates, suppresses the ex-
pulsion process (butylated hydroxyanisole, however, has additional metabolic
effects) (141, 142). The existence of a process that expels nematodes through
the production of reactive oxygen intermediates could provide an evolutionary
explanation for why nematodes produce enzymes, such as catalase, glutathione
reductase, and superoxide dismutase, that offer some protection against re-
active oxygen intermediates (143). Lipid peroxidation, as a mechanism for
inducing worm expulsion, was potentially linked to IL-4 by the observation
that IL-4 stimulates, in humans, production of the lipid peroxidating enzyme
15-lipoxygenase (144, 145). Human 15-lipoxygenase is highly toxic for at
least some helminths; it kills schistosomula larvae ofSchistosoma mansoniin
vitro with a potency at least 10-fold greater than that of eosinophil basic pro-
tein (A Mahmoud, personal communication). Mice lack 15-lipoxygenase, but
express a homologous enzyme, 12-lipoxygenase (146, 147). Further studies,
however, demonstrated that normal mice and IL-4 KO mice have equivalent
levels of 12-lipoxygenase, and that in vivo treatment of mice with IL-4 fails
to induce increased 12-lipoxygenase expression (J Cornicelli, JF Urban Jr, FD
Finkelman, unpublished data). Thus, while the possibility remains that lipid
peroxidation may be involved with the induction ofN. brasiliensisexpulsion,
there is currently no way to associate this in mice with IL-4.

STUDIES WITHT. MURIS T. murisresemblesH. polygyrusrather thanN. brasili-
ensisin that it is an entirely enteral infection and its expulsion is blocked by
anti-IL-4 receptor antibody. Both IL-4 and IL-9 [which can enhance IL-4 ef-
fects (103, 104)] promote expulsion ofT. murisby normally susceptible mouse
strains (56; HC Faulkner, RM Grencis, personal communication). In this re-
gard, it is of interest that IL-9 and IL-4 share a signaling pathway: Both tyrosine
phosphorylate the insulin receptor substrate-1 molecule but differ in their sig-
naling through Stat molecules (IL-4 tyrosine phosphorylates Stat6, whereas
IL-9 tyrosine phosphorylates Stat3) (148). As with the other parasites dis-
cussed here, specific antibodies can promote, but are not necessary to induce,
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expulsion (149, 150). UnlikeT. spiralis, anti-c-kit mAb does not appear to
prevent expulsion (LE Donaldson, KJ Else, RM Grencis, personal communica-
tion). Normally resistant mice that have been treated with anti-IL-3 mAb still
expelT. muriseffectively, even though their mast cell responses are depressed
(KJ Else, RM Grencis, unpublished data). The mechanisms by which IL-4 (or
IL-13) contributes to expulsion of this parasite remain largely uninvestigated.

GENERAL CONCLUSIONS

Studies of four different gastrointestinal nematode parasites have shown that
expulsion of each is dependent upon CD4+ T cells, promoted by IL-4, and in at
least some cases inhibited by IFNs. Control of two of these parasites (T. muris
andH. polygyrus) appears to be highly IL-4-dependent, while IL-4 induces
redundant protection for a third (N. brasiliensis) and decreases the intensity of
infection with the fourth (T. spiralis). IgE/mast cell–mediated mechanisms are
likely to be central to the rapid expulsion that occurs in immune rats challenged
with T. spiralis larvae; however, neither this nor IL-4-dependence of the rapid
expulsion phenomenon has been demonstrated directly. The immune mecha-
nisms that are responsible for expulsion of the other parasites, or for expulsion
of T. spiralis from mice or from rats that harbor a primary infection, are even
less well understood. In instances where IL-4C treatment promotes a slow de-
crease in worm fecundity and eventually induces expulsion, it seems likely that
a mechanism that interferes with worm ingestion of food is involved, but the na-
ture of this mechanism is not clear. There is strong evidence that IL-4 promotes
intestinal mucosal mastocytosis, IgE production, and in some cases, IgG1 pro-
duction, and stimulates a change in intestinal fluid dynamics that favors fluid
accumulation in the gut lumen and an increase in small intestine smooth muscle
contractility; however, none of these phenomena has been clearly demonstrated
to be required for expulsion. Thus, host protection against parasitic gastroin-
testinal nematodes appears often to be more dependent upon effects of type 2
cytokines, in general, and IL-4, in particular, that are still poorly characterized,
than on the classic type 2 cytokine-dependent, worm infection–related triad of
eosinophilia, mastocytosis, and IgE production.

Further experiments with Stat6 KO mice should be useful for testing the rele-
vance of IL-4–induced physiological events to worm expulsion. Although Stat6
KO mice do not respond to IL-4 with increases in either class II MHC or CD23
expression and although they are unable to make IgE responses, IL-4 can act as a
growth factor for B and T cells from these mice (151, 152) and can induce a large
mucosal mast cell response in anti-CD4 mAb-treatedN. brasiliensis-infected
mice (JF Urban, Jr, KB Madden, FD Finkelman, unpublished data). Thus, mast
cell–dependent changes in gut physiology may still occur in Stat6 KO mice.
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Although some IL-4-induced phenomena that are involved in worm expul-
sion may remain undiscovered, the failure to identify unique mechanisms that
are responsible for the expulsion of specific parasitic nematodes may reflect re-
dundancy of host defenses. Inhibition of a single redundant defense mechanism
may have no detectable effect on worm expulsion or may merely retard expul-
sion. Host defense mechanisms against parasitic nematodes may be redundant
at two levels: First, a single cytokine, IL-4, most likely induces multiple ef-
fects, more than one of which may induce worm expulsion; and second, for at
least some parasitic nematodes, IL-4 is only one of multiple stimuli that can
induce worm expulsion. In some instances this redundancy may be limited to
induction of a single signal transduction pathway by more than one stimulus,
but in other instances, totally unrelated defense mechanisms appear able to con-
trol infection. The redundancy of host defense mechanisms against parasitic
nematodes may seem inefficient, and it probably subjects the host to untoward
effects of defense mechanisms that are unnecessary to expel a particular para-
site. The adaptive nature of redundancy makes biological sense, however, for
two reasons. One is that just as natural selection promotes the evolution of
host defenses against parasites, it promotes parasite evolution of mechanisms
that evade host defenses. Because it would be less likely for a parasite si-
multaneously to develop means of evading several defense mechanisms, the
employment of redundant defenses against a particular parasite should inhibit
the selection of parasites that resist any of these defenses, just as treating bac-
terial infections simultaneously with multiple antibiotics inhibits the selection
of bacteria that resist any of the antibiotics. Host deployment of redundant
defenses also makes sense if the host has a limited ability to recognize distinct
features of particular parasites but can recognize a feature that is common to a
particular class of parasites.

This situation could cause a set of defense mechanisms to become linked
through natural selection if infection by most members of the parasite class can
be controlled by at least one mechanism in the set, but no single mechanism
in the set can control infection by most of the parasites. By this logic, IL-5
production and eosinophilia, or IL-3 production and mucosal mastocytosis, are
induced in mice infected byN. brasiliensisnot because they protect the host
against this particular parasite, but because the host recognizes some feature(s)
of N. brasiliensisthat is common to a class of parasites that includes some
members susceptible to attack by eosinophils or mucosal mast cells. Recog-
nition of putative features common to gastrointestinal nematodes presumably
informs the host immune system that a stereotypic type 2 cytokine response
will be more protective than a type 1 or type 0 cytokine response. However,
the recognized features are likely to be too general to allow the host’s immune
system to safely make only those type 2 responses that protect against a specific
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parasite. We hypothesize that some of these parasite features are likely to be
shared by strong allergens and may be responsible for the obviously maladap-
tive responses made to nonthreatening molecules such as dust mite proteases,
bee venom phospholipids, or pollen antigens.
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